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n this work a mechanism is proposed for levitation and stable confinement of a heavy rotating body using 

electromagnetic interactions alone, with no position-dependent control. Support of the weight and vertical 

confinement are achieved through an axisymmetric magnetic field while lateral confinement is accomplished by 

a rotating octupolar field via the Brouwer saddle mechanism. The orientational degrees of freedom are stabilized 

through gyroscopic action. The design features multiple variable parameters, thus allowing considerable flexibility 

for scaling the system size and maximizing the basin of attraction of the stable state. 

* 

arnshaw’s theorem states that that no configuration of charges or currents (or hypothetical magnetic 

monopoles) can be stably confined in space by any time-independent configuration of charges or currents in 

air or media with positive permittivity and permeability [1,2]. This raises difficulties in the design of 

electromagnetic traps for ions, atoms or, in particular, rigid bodies. Perhaps the first instance of magnetic levitation 

was in 1939 when the German physicist BRAUNBECK levitated some diamagnetic graphite particles above a strong 

electromagnet. Sixty years later, SIR ANDRE GEIM, SIMON and co-workers performed a highly innovative variant 

of this using a 16 Tesla magnetic field and a live frog as the levitator [3-5]. When high Tc superconductivity was 

discovered [6], it fuelled dreams of the ultimate levitator based on this principle [7], but as we know, such a concept 

has yet to fructify. 

Microscopic particle traps usually use time dependence to work round Earnshaw’s theorem. Paul trap [8-11] consists 

of an electric field which is statically stable in two directions but unstable in the third, and then oscillates rapidly to 

stabilize the troublesome direction via the Kapitza pendulum mechanism. In Penning trap, the electric and magnetic 

fields are static but the electrons themselves move through the interior of the trap [12,13]. The ingenuity of the design 

ensures that the electron is forever unstable to a perturbation along its path (there must be an unstable direction as 

per Earnshaw) but the path is closed, and stable to deviations perpendicular to itself. These two concepts ensured 

that the problem of electromagnetic trapping of microscopic particles was essentially solved. Although scope for 

improvement in design always remains, the basics are by now well established.  

Electromagnetic trapping of rigid bodies presents a different story. The existing levitators use brute force to achieve 

confinement – they mount an array of electromagnets all connected to variable sources, continuously sense the 

position of the object and instantaneously excite the right set of electromagnets to counteract its immediate 

destabilization tendency [14]. Every dynamical system, however unstable intrinsically, can always be stabilized 

through a sufficiently complex control arrangement, and this is the philosophy employed by these devices. This 

method of bypassing Earnshaw’s theorem is inelegant as well as impractical, as evident from the fact that maglev 

trains today carry passengers on 59 km of track worldwide. 

The only design till date which achieves control-free magnetic levitation and stabilization of a macroscopic object is 

the toy called “Levitron”, invented by HARRIGAN and HONES. This is a magnetic dipole in the shape of a top 

which floats above a magnetic block. Its action was first explained by SIR MICHAEL BERRY [15], and I will 

hereafter refer to the Levitron as the HHB confinement mechanism. Amazing as this mechanism is, with a dc 

I

E



 

2 
 

magnetic field achieving trapping and with the subtle underlying physics connecting to various aspects of quantum 

theory [16-18], it has not proved practically realistic due to the light weight of the top, the smallness of the basin of 

attraction of the stable state and the absence of external parameters which can be tuned to scale the system size or 

enhance its stability. Twenty years after its invention, the HHB mechanism still powers only a fascinating toy and 

nothing of greater import. 

In this Letter I will propose a novel design for an electromagnetic rigid body trap. Like the HHB mechanism, it uses 

no active control but the manner of bypassing Earnshaw’s theorem is closer in spirit to that of Paul trap. This enables 

the system size to be scaled as per the application requirements and allows for the introduction of several design 

parameters which can be optimized for maximal stability. The design of this trap is shown below. 

Figure 1 : Schematic representation of the trap. The 

“captive” is the rigid body which is to be confined; in 

general it spins fast about its symmetry axis. For the 

magnetic dipoles, red denotes North and blue South. 

The lift dipoles are mounted vertically, pointing upwards. 

The two inclined dipoles can be decomposed into a 

vertical lift component and a horizontal outward-pointing 

trapping component. The lift coil with red face carries 

current counter-clockwise (CCW) while that with blue 

face carries clockwise (CW) when viewed from the top. 

The three-phase octupolar winding encloses the 

apparatus completely; half of it has been excised to 

reveal what lies inside. a,b,c here denote the phase 

names and not the Eulerian basis of (3). 

 

 

The electromagnetic force and torque on each dipole can be written as 

 ( )
all dipoles 

n n
n

= ⋅∇∑F m B    , (1a) 

 ( )
all dipoles 

n n n n
n

= × + ×∑T r F m B    , (1b) 

where the summations run over the lift as well as the trapping dipoles and Bn denotes the magnetic field at the location 

of dipole n arising from the lift as well as the trapping coils. Note that in (1b), rn denotes the vector from the captive 

centre of mass (CM) to the nth dipole. The translational equations of motion are straightforward : 

 /CM xx F M=ɺɺ    , (2a) 

 /CM yy F M=ɺɺ    , (2b) 

 /CM zz F M g= −ɺɺ    , (2c) 

where M is the captive mass. For the rotational equations we use Euler angles in the Euler or gyroscope convention 

[19]. Letting the captive be symmetric with axial moment of inertia Ic and perpendicular moments equal to I, we 

define the a,b,c basis as one which shares the precession and nutation of the captive but not its spin. Here a is the 

nutation axis and c the symmetry axis. Evaluating the material derivative of angular momentum in this basis yields 

 ( ) 2cos sin cos sinc aI I I Tθ ψ φ θ φ θ φ θ θ+ + − =ɺɺ ɺ ɺ ɺ ɺ    , (3a) 

 ( )sin 2 cosc c bI I I I Tφ θ φθ θ θψ+ − − =ɺ ɺɺɺ ɺ ɺ    , (3b) 

 ( )cos sinc cI Tψ φ θ φθ θ+ + =ɺɺɺ ɺɺ ɺ    . (3c) 

These are the equations of motion of the captive. 

Before attempting a mathematical treatment of these equations, we will spend some time to argue on physical 

grounds that the trap based on this design will really work. A physical argument has the advantage of not being 

reliant on approximations, which are essential to get meaningful quantitative results for such a complicated system. 

We start from an analysis of the Brouwer saddle [20-23], which forms the core of the design. The basic equation of 

this saddle can be written as  

 ( )2 cos sinx A x t y tω ω= − +ɺɺ    , (4a) 
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 ( )2 sin cosy A x t y tω ω= +ɺɺ    , (4b) 

where x and y are the displacements of the particle, A the strength of the saddle and ω is twice of its rotation frequency. 

Following LANDAU’s treatment of the Kapitza pendulum we do a direct partition of motion into slow and fast, 

writing x=xs+xf and y=ys+yf where the ‘s’ components vary slowly and the ‘f’ components vary rapidly, oscillating at 

frequency ω; solving for the fast components and averaging over them gives the slow equations 

 2

4
s s

A
x x

ω
= −ɺɺ    , (5a) 

 2

4
s s

A
y y

ω
= −ɺɺ    , (5b) 

which clearly describes a spring in both directions. Numerical work shows clear-cut stability zones in the (A,ω) 

parameter plane; the quantitative values (5) have some scope for improvement. Much more detailed and accurate 

analysis can be found in the References cited earlier. 

Now we see how this concept gets applied in this trap, to overcome the instability arising from the lift coils. These 

coils support the weight of the captive by generating a field such that / 0zB z∂ ∂ > . The second derivative 2 2/zB z∂ ∂  

is positive at small z, has a zero at some finite value of z, and is negative thereafter. If we choose the default operating 

point (the “cruising altitude”) to be in the latter region, then the system will automatically be stable in z. By 

Earnshaw’s theorem and circular symmetry, it must be unstable in x,y. To counter this instability we introduce the 

trapping field and dipoles; since they are all in the plane, they do not tamper with the z-stability. The trapping current 

can be written to good approximation as a surface current (Amps per metre) ( )0 ˆcos ( )K n γ ζ= −K z , where 2n is the 

polarity of the trapping coils, γ the azimuthal angle and ζ a phase which is in general a function of time. This creates 

a field which lies in the x-y plane and possesses a spatial gradient whose strength increases with n. In this Letter we 

take the case n=4 (quadrupolar trapping coil), which  produces a favourable interaction with two trapping dipoles on 

the captive. A schematic of this is shown in Fig. 2. 

In the configuration shown in the Figure, the trapping 

field points dead outwards along the x-axis which is how 

the dipoles are aligned. When the captive is at the centre 

of the trapping field, the force on the right dipole is 

leftwards, that on the left dipole is rightwards, and their 

resultant is zero. If the captive is displaced slightly along 

the x-axis to the right, then the force on the right dipole 

becomes stronger still while that on the left one becomes 

weaker, creating a resultant opposite to the displacement. 

Consistent with Earnshaw’s theorem, if the captive is 

displaced perpendicular to this line, then the resultant 

force will augment the displacement, creating the 

expected saddle behaviour. Now consider the case where 

the captive has rotated and is aligned with the 45o line. 

This time, the trapping field points dead inwards along 

this line, so the situation is the same as the previous case 

except for the signs. The captive augments a displacement 

along the line while opposing one perpendicular to the 

line. This is a saddle where the axes have switched. Hence as the captive rotates through the octupolar field, it 

effectively sees a rotating saddle potential, which is the Brouwer saddle. This action counteracts the x,y instability 

arising from the lift coils, and generates overall translational stability. The rotational degrees of freedom are stabilized 

primarily through the gyroscopic action of the captive, which is pretty standard and needs no separate elaboration.  

We now express the above arguments in quantitative terms. Due to the difficulty of analytic characterization of the 

magnetic field, we shall not attempt to convert (1-3) into an explicit nonlinear equation of motion. Rather, 

considering the reference configuration to be where the captive is coaxial with the lift and trapping coils and is at a 

cruising altitude of z0 above the load coils and at zero nutation, we invoke symmetry arguments and/or elementary 

calculation to prove that it is a fixed point of the nonlinear system, and then perform a stability analysis based on ad 

hoc linearization about that point. We let the perturbations be xCM (deviation of captive CM from x=0, which is the 

Figure 2 : The octupolar magnetic field with the captive inside. 

The green line to the right is the x-axis and the other one 

makes a 45o angle to it. Its significance is explained in the text. 

Figure 2 : The octupolar magnetic field with the captive inside. 

The green line to the right is the x-axis and the other one 

makes a 45o angle to it. Its significance is explained in the text. 
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abscissa of the centre of the lift coil), yCM (defined analogously), zCM (deviation of captive CM from z=z0 whose value 

is chosen to ensure static stability in z) and θ (the angle of nutation of the captive).  

Letting the captive radius r0 be equal to the average of those of the CW and CCW lift coils, the lift field can be written 

in a narrow annulus about (r0,z0) as 

 ( ) ( )( )1 0 2 0 00 .....B C r C r z zρ ρ ρ= − − + − − +    , (6a) 

 ( ) ( ) ( )2 2

0 1 0 2 0 0

1
.....

2
zB B C z z C r z zρ = − + − + − − − +

 
   , (6b) 

where B0, C1 and C2 are positive. This expression accounts for the facts that at z=z0, 0zB < , / 0zB z∂ ∂ >  as required 

for a lift force, and 2 2/ 0zB z∂ ∂ <  as required for static stability; at ρ=r0, 0Bρ ∼  as seen from analytical and numerical 

work, and that 0∇ ⋅ =B , 0∇× =B . We let m1 be the strength of the lift dipoles and m2 that of the trapping dipoles; 

we assume that the latter point radially inwards. The number of lift dipoles is chosen so as to cancel off certain second 

harmonics, while that of trapping dipoles is selected in view of considerations arising from the trapping field. By 

Taylor expanding the magnetic field to first order in perturbations and using (1), we can write the force as 

 ( ){ } ( )1 2
1 1 2 1

0

1
1 cos2 sin 4 2 sin

2
x CM CM CM

C m
F x y C m C m x

r
φ ψ φ ψ θ φ

  = − + + + − +  
  

   , (7a) 

 ( ) ( ){ }1 2
1 1 2 1

0

1
sin 4 1 cos2 2 cos

2
y CM CM CM

C m
F x y C m C m y

r
φ ψ φ ψ θ φ

  = − + + − + + +  
  

   , (7b) 

 2 12z CMF C m z= −    , (7c) 

and the torque as 

( ) ( ) ( )22
0 2 2 1 1 0 1 12 sin 2 sin 3 sin sin 4 cos 2

2
x CM CM CM

C
T r m x C y C m B C m yφ ψ φ ψ θ ψ φ ψ θ φ

 = − + + + − + + +  
, (8a) 

( ) ( ) ( )2 2
0 2 2 1 1 0 1 12 cos sin 2 sin cos 4 sin 2

2
y CM CM CM

C
T r m C x y C m B C m xφ ψ φ ψ θ ψ φ ψ θ φ

 = + + + + + − −  
 . (8b) 

The role of Tz is to affect the rotation speed of the captive. Since that is physically constrained to remain constant on 

the long term, and is controlled by the user depending on the application requirement, Tz is not a quantity of interest. 

We assume that the cylindrical trapping coil is infinitely long in z and carries a surface current (Amps per metre) 

0 ˆcos 4K γ=K z  where γ denotes azimuthal angle in cylindrical coordinates. Inside it we can write the magnetic field 

in Cartesian coordinates as ( ) ( ) ( )3 3 2 2 3
0 ˆ ˆ/ 2 3 3K R x xy x y yμ  = − + − +

 
B x y . Due to the rotation of the three-phase 

current however, this expression will in general be valid not in the x,y basis but in a new basis xr,yr which makes an 

angle ζ(t) with the x,y basis. Thus B will actually be the above expression with x,y replaced by xr,yr, and the conversion 

between the bases will be given by 

 
cos sin cos sin

;   
sin cos sin cos

x xrr

y yrr

B Bx x

B By y

ζ ζ ζ ζ

ζ ζ ζ ζ

   −       
= =          −          

   , (9) 

The calculation of the first and second derivatives of this can be simplified by recognizing that we require these 

derivatives at the default (unperturbed) location of the nth lift or trapping dipole, which has the form 

( ) ( )0 0ˆ ˆcos sinn nr rφ ψ β φ ψ β+ + + + +x y , where βn is the angle made by the position vector from the captive CM to the 

dipole with a body-fixed in-plane axis. Then, to account for the rotation of the field, we can simply deduct an angle 

4ζ from the arguments of these trigonometric functions and substitute these angles into the derivatives of the 

unrotated field. The factor of 4 arises from the fourfold symmetry of the octupolar field. 

The following linearized expressions for force are obtained from a lengthy calculation :  

 ( ) ( )0 0 2
3

6
cos2 4 sin 2 4x CM CM

K r m
F x y

R

μ
φ ψ ζ φ ψ ζ= − + − + + −      , (10a) 

 ( ) ( )0 0 2
3

6
sin 2 4 cos2 4y CM CM

K r m
F x y

R

μ
φ ψ ζ φ ψ ζ= + − + + −      , (10b) 

and Fz=0 because of the absence of z-dependence of the trapping field. This is of course the Brouwer saddle (4). This 

result has in fact been applied to particle traps [24,25]; here we can see a novel application to a rigid body trap. If we 
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average over the fast frequency scales in (7a,b), we can see on a slow level the repeller terms C2m1 which arise from 

Earnshaw (recall that (7c) shows static stability). This repeller effect can be countered by the rotating saddle. We note 

that if the number of trapping dipoles had been four, then (10) would have got replaced by Fx=Fy=0, which is useless. 

The torque from the trapping field is 

 

( ) ( ) ( ) ( )

( )

3
0 0 2

3

3
0 0 2

3

3
sin cos sin 2 4 sin cos2 4

sin sin3 4

x

K r m
T

R

K r m

R

μ
θ ψ φ ψ φ ψ ζ φ ψ φ ψ ζ

μ
θ ψ φ ψ ζ

= + + − − + + − −  

+ −
   , (11a) 

 

( ) ( ) ( ) ( )

( )

3
0 0 2

3

3
0 0 2

3

3
sin cos cos2 4 sin sin 2 4

sin cos3 4

y

K r m
T

R

K r m

R

μ
θ ψ φ ψ φ ψ ζ φ ψ φ ψ ζ

μ
θ ψ φ ψ ζ

= − + + − − + + − −  

+ −
   , (11b) 

and once again Tz is not of interest.  

Combining (8) and (11) and averaging over fast scales, we can see two types of torque terms – some about a fixed 

axis and some about the a-axis along which the rotor has nuted. The latter terms again comprise a dc component and 

a slowly oscillatory one. The dc one is 

 ( )1 0 1 2 04 3aT m B C m rθ= −    , (12) 

which contains a clearcut instability term and a second term where the sign of m2 determines stable or unstable. 

Nevertheless, if the captive spins fast enough, any instability here can be absorbed into precession via the gyroscopic 

effect and prevents the captive from toppling over. The fixed-axis terms and slowly oscillating a-axis terms are 

 ( )1 1 2 2 02x CMT C m C m r y= −    , (13a) 

 ( )1 1 2 2 02y CMT C m C m r x= − −    , (13b) 

 

3
0 0 2

3

3
cos 4

2
a

K r m
T

R

μ
θ ζ
 

=  
 

   . (13c) 

However, we recognize that the terms in (13a,b) are actually also oscillatory because xCM and yCM are themselves 

sinusoidal on account of the Brouwer saddle effect. The stability of the gyroscope system in the presence of an 

oscillatory torque about a fixed axis can be calculated by assuming fast spin, replacing the oscillation with periodic, 

impulsive kicks and then tracking the trajectory of the tip of the angular momentum vector. An easy reduction to a 

Poincare map shows that the system remains stable. 

Simulation of the system confirms that the system indeed has regions of stable operation. For these simulations we 

have reformulated the problem in terms of the BRIAN TAIT or aircraft angle convention because it lacks the 

singularity (gimbal lock) present in the gyro convention at θ=0. The lift and trapping magnetic fields are calculated 

using Biot-Savart law and the analytical octupolar field formula. The values I have chosen for these simulations are 

(in arbitrary units)  

• Lift coils : Inner coil radius 1.00, Outer coil radius 1.10, μi/4π set equal to 1 

• Trapping coils : μK0/2R3 set equal to 16000, Spin rate variable 

• Captive : Radius 1.05, Mass 1000, Acceleration due to gravity 10, Axial moment of inertia 5000, Transverse 

moment of inertia 2500, Number of load dipoles 4, Strength of load dipoles 10, Number of trapping dipoles 

2, Strength of trapping dipoles 10 

The value of z0 is chosen as 0.1, where the lift force is 10000. This altitude is considerably above the threshold where 
2 2/zB z∂ ∂  changes from positive to negative (at around z=0.05). Finally, I have added first order damping to the 

system to accelerate the convergence of the simulation. This damping is proportional to the velocity or angular 

velocity by a factor whose value is 1 for the translational modes and 0.4 for the rotational ones. We note that such 

damping cannot overturn the effect of a repelling potential; 0x x xγ+ − =ɺɺ ɺ  is always unstable, however large γ may 

be. The physical explanation for this is that the particle becomes slow enough that the damping force is insignificant 

and then crawls out along the potential. 
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Figure 3 : Simulation of the system at two different operating points (the captive speed is labelled) with an initial perturbation in xCM 

equal to 0.03 in the left panel and 0.02 in the right.  

 

These preliminary simulations clearly indicate that the captive is stable and hence the proposed design of trap is 

effective.  

We now perform further simulations to determine the regions in parameter space where the trap is stable. The 

parameters we have focussed on for this run are the combination 3
0 /2K Rμ  (which we rename as Ks), the speed ω 

of the captive and the slip frequency which is the difference 4ω ζ− ɺ . Seeing that the stability is governed primarily by 

the translational modes rather than the rotational ones (except at extremely low absolute values of ζɺ  which are 

rejected), I have run the simulations with the translational modes only to accelerate convergence and improve 

accuracy. For each simulation I have started the system with an initial perturbation xCM=0.02 and have measured 

whether the perturbations are growing or decaying in a time span of 5 time units. The results are below. 

The first plot is for a fixed slip frequency of 50, while Ks and ω are varied. 

 

Figure 4 : Plot of system stability as Ks and ω are varied. 

 

There is a single transition from unstable to stable as the current is raised. We now hold Ks constant at 14000 and 

vary ω and the slip frequency. This time there are two transitions – unstable to stable at a low slip and then back to 

unstable as the slip is raised further. Since low values of ζɺ  (less than 2-3 units) cause rotational instability, I have cut 

off the slip at ω−4. 
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Figure 5 : Plot of system stability as ω and slip frequency are varied. “U” denotes unstable. 

 

Finally, I have held speed constant at 120 units and varied current with slip frequency. Once again we see a double 

transition, first at very low slip and then again at higher slip. 

 

Figure 6 : Plot of system stability as Ks and slip frequency are varied. 

 

More detailed curves can be obtained from a systematic analysis of the high order nonlinear equations governing the 

motion of the captive; we leave such considerations for future study. 

  

*     *     *     *     * 

I am very grateful to the anonymous Reviewer for suggestion the inclusion of Figures 4-6 and providing many suggestions for 

improvement of quality of the manuscript. 

I certify that the simulations here have been performed honestly. A legitimate demand for the code from a bonafide third party will be 

complied within 24 hours except under exceptional circumstances. 
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